Conduction deficits and membrane disruption of spinal cord axons as a function of magnitude and rate of strain.

نویسندگان

  • Riyi Shi
  • Jim Whitebone
چکیده

White matter strips extracted from adult guinea pig spinal cords were subjected to tensile strain (stretch) injury ex vivo. Strain was carried out at three magnitudes (25, 50, and 100%) and two strain rate regimens: slow (0.006-0.008 s(-1)) and fast (355-519 s(-1)). The cord samples were monitored physiologically using a double sucrose-gap technique and anatomically using a horseradish peroxidase assay. It seems that a higher magnitude of strain inflicted significantly more functional and structural damage within each strain rate group. Likewise, a higher strain rate inflicted more damage when the strain magnitude was maintained. It is evident that axons have remarkable tolerance to strain injury at a slow strain rate. Even a 100% strain at the slow rate only eliminated two-thirds of the compound action potential amplitude and resulted in almost no membrane damage when examined 30 min after strain. It is also clear that the spontaneous recovery is evident yet not complete compared with preinjury levels at the fast strain rate. To examine the factors that might influence the vulnerability of axons to strain, we have shown that the axonal diameters did not play a significant role in dictating the susceptibility of axons to strain. Rather, it is speculated that the location of axons might be a more important factor in this regard. The knowledge gained from this study is likely to be informative in elucidating the spinal cord biomechanical response to strain and strain rate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Biodegradable Polymers on the Rat's Damaged Spinal Cord Neural Membranes

     The overall goal of this study was to identify the appropriate biomaterials able to facilitate the regeneration in rat's injured adult spinal cord. Acute damage to axons is manifested as a breach in their membranes, ionexchange distortion across the compromised region, local depolarization and even conduction block. It would be of particular importance to interrupt the progress of events h...

متن کامل

Membrane fusion/repair in nerve cells: a biophysical application in spinal cord injuries regeneration

Cell membrane has a critical and vital role in functioning and existence of nerve cells that form central nervous system (CNS) in mammals. Disruption of nerve membrane that normally occurs following an accident injuring spinal cord is known to be the major cause of paralysis. In most occasions, spinal cord injuries are not leading to complete cut in spinal cord fibers but are known to cause cru...

متن کامل

Membrane fusion/repair in nerve cells: a biophysical application in spinal cord injuries regeneration

Cell membrane has a critical and vital role in functioning and existence of nerve cells that form central nervous system (CNS) in mammals. Disruption of nerve membrane that normally occurs following an accident injuring spinal cord is known to be the major cause of paralysis. In most occasions, spinal cord injuries are not leading to complete cut in spinal cord fibers but are known to cause cru...

متن کامل

Compound Action Potential of Isolated Spinal Cord: A Biophysical Analysis to Address Activity of Individual Fibers Following Contusion Injury

Compound action potential (CAP) of spinal cord represents valuable properties of neural fibers including excitability, rate of myelination and membrane integrity. These properties are measured using amplitude, latency and area under curve of CAPs recorded from spinal cord. Here, the isolated spinal cord was set in a double sucrose gap (DSG) chamber and its response to intracellular stimulation ...

متن کامل

بررسی اثر ضد آپوپتوزی والپروئیک اسید در مدل موشی ضایعه نخاعی

Background and Objective: Spinal cord injury (SCI) leads to the loss of axons and cell death via necrosis and apoptosis, eventually resulting in sensory and motor dysfunction. The aim of this study was to evaluate the effects of valproic acid on the inhibition of apoptosis and the improvement of motor function in the rat model of spinal cord injury. Materials and Methods: Contusion model was u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 95 6  شماره 

صفحات  -

تاریخ انتشار 2006